Ischemic neuronal injury is ameliorated by astrocyte activation.
نویسندگان
چکیده
BACKGROUND The motivation of this study was to more precisely define the in vivo role of astrocytes in forebrain ischemia. Controversy exists in the literature as to whether they protect or injure neurons in this setting. METHODS Astrocytes in the rat hippocampus were disabled with stereotactic administration of a gliotoxin, ethidium bromide, 3 days prior to induction of forebrain ischemia. The extent of neuronal injury in this group was compared to a control category receiving intrahippocampal saline only. RESULTS Saline-injected animals demonstrated decreased hippocampal CA1 sector injury, and increased gliosis on the side of the injection compared to the contralateral side (P < 0.01) or ethidium bromide-treated animals (P < 0.05). CONCLUSIONS The results suggest that activated astrocytes are protective to neurons subjected to an ischemic insult. This may result from their ability to elaborate neurotrophic factors, buffer potassium and metabolize a variety of neurotransmitters.
منابع مشابه
Hippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats
Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal d...
متن کاملProtective effects of paeonol on subacute/chronic brain injury during cerebral ischemia in rats
Ischemic stroke is a highly complex pathological process that is divided into acute, subacute and chronic phases. Paeonol is a biologically active natural product with a variety of pharmacological effects, including those on neuronal activity. However, the effects of paeonol on subacute/chronic ischemic stroke have remained to be elucidated. The present study was designed to investigate the eff...
متن کاملCellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury
Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...
متن کاملStreptozotocin-induced diabetes causes astrocyte death after ischemia and reperfusion injury.
Diabetes exacerbates neuronal cell death induced by cerebral ischemia. One contributing factor is enhanced acidosis during ischemia. Astrocytes are vulnerable to hypoxia under acidic conditions in vitro and may be targets of ischemia under diabetic conditions. The objective of this study was to determine whether diabetes would cause damage to astrocytes after an ischemic brain injury in vivo. D...
متن کاملReactive astrocytes and astrocyte intermedite filament (nanofilament) system in neurodegenerative diseases
Astrocytes have multiple functions in the central nervous system (CNS), e.g control of the formation, function and removal of neuronal synapses, control of blood flow, and they play a role in brain responses to neurotrauma and stroke. In CNS injury, stroke, or in neurodegenerative diseases, astrocytes upregulate the expression of intermediate filament (nanofilament) proteins glial fibrillary ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques
دوره 25 2 شماره
صفحات -
تاریخ انتشار 1998